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Studies on geographic inequalities in life expectancy in the United
States have exclusively focused on single-level analyses of aggre-
gated data at state or county level. This study develops a multi-
level perspective to understanding variation in life expectancy by
simultaneously modeling the geographic variation at the levels of
census tracts (CTs), counties, and states. We analyzed data from
65,662 CTs, nested within 3,020 counties and 48 states (plus Dis-
trict of Columbia). The dependent variable was age-specific life
expectancy observed in each of the CTs. We also considered the
following CT-level socioeconomic and demographic characteristics
as independent variables: population density; proportions of pop-
ulation who are black, who are single parents, who are below the
federal poverty line, and who are aged 25 or older who have a
bachelor’s degree or higher; and median household income. Of the
total geographic variation in life expectancy at birth, 70.4% of the
variation was attributed to CTs, followed by 19.0% for states and
10.7% for counties. The relative importance of CTs was greater for
life expectancy at older ages (70.4 to 96.8%). The CT-level inde-
pendent variables explained 5 to 76.6% of between-state varia-
tion, 11.1 to 58.6% of between-county variation, and 0.7 to 44.9%
of between-CT variation in life expectancy across different age
groups. Our findings indicate that population inequalities in lon-
gevity in the United States are primarily a local phenomenon.
There is a need for greater precision and targeting of local geog-
raphies in public policy discourse aimed at reducing health inequal-
ities in the United States.
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During much of the 20th century, longevity has increased in
the United States primarily due to socioeconomic advances

and progress in basic public health, including vaccine develop-
ments and sanitation improvements (1). However, not everybody
in the United States has equally benefited, as this trend has been
accompanied by increasing gaps in longevity by place of resi-
dence (2), race/ethnicity (3–5), and socioeconomic groups (6–8).
A child born in 2014 in the United States can be expected to live,
on average, 79.1 y. However, this United States-wide average
masks substantial geographic differences: in 2014, there was a
20.1-y gap between the lowest and the highest life expectancy
(LE) at birth (LE0) across all counties (2).
Meanwhile, studies monitoring geographic inequalities in LE

in the United States as a whole have exclusively focused on
single-level analyses of aggregated data at regional, state, or
county level. Chang et al. (9) explored the differences among US
regions in LE and reported that the Northeast had the highest
values and the South had the lowest. An analysis of the state-
specific life tables for 1999 to 2001 showed that Hawaii (80.23 y)
had the highest LE0 and Mississippi had the lowest (73.88 y)
(10). Most studies have focused on counties when analyzing
geographic inequalities in LE in the United States. Exploring

data from 2007, Kulkarni et al. (11) identified that the difference
between counties with the highest and the lowest LE was 15.2 y
for men and 12.5 y for women. Wang et al. (12) and Dwyer-
Lindgren et al. (2) also used counties as the unit of analysis
and reported not only the great magnitude of inequalities be-
tween counties but also their increase in-between the 1980s and
the early 21st century.
The implicit recognition that counties matter most for un-

derstanding inequalities in longevity in the United States results
from a problematic inference based on single-level studies of
counties. The sensitivity of geographic patterns to the choice of
areal units has been well recognized, both in terms of the arbi-
trariness of any single aggregate level [also known as the
“modifiable areal unit problem” (13)] and in terms of the need to
consider multiple relevant units as outlined in the classic paper
“geographical variances” by Moellering and Tobler (14). To truly
examine which geographic scales matter the most for inequalities
in longevity in the United States, multiple levels that are thought
to influence longevity must be simultaneously considered (15).
For instance, states and counties are important because legisla-
tion, policies, and programs that provide health care, economic
assistance, and social services are administered and implemented
at both levels (15). A multilevel study partitioning variation in
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LE demonstrated that prior county-level studies have over-
estimated the importance of the county level by omitting states
(15). Further expansion of such multilevel perspective with in-
clusion of data at smaller levels like census tracts (CTs) can more
accurately partition the geographic variation in longevity at rel-
evant levels. By analyzing CTs as a geographic unit, it becomes
possible to better understand intraurban disparities and better
design local public policies.
Furthermore, simply because prior studies have found that

“counties differ” does not automatically mean “counties make a
difference.” The observed significant variation at the county level
from prior single-level studies is likely an artifact resulting from a
conflation of “contextual effects” of counties and “compositional
effects” of local areas (16). Here, composition refers to the
geographic clustering of CTs with high or low LE as well as those
with certain socioeconomic and demographic makeup. The
contextual effect for each state and county can be better esti-
mated after explicitly accounting for these compositional char-
acteristics (16). More generally, expanding the levels of analysis
to include areas in which people reside can potentially illuminate
alternative public policy solutions to understand and address the
persistent problems of social inequalities across multiple con-
texts (17). While counties have been the smallest geographic unit
at which national data on LE were available in the United States,
the recently released CT data enables an analysis to simulta-
neously assess multiple geographic levels and to effectively
control for local compositional effects.
Given the identified gaps in current literature, we systemati-

cally investigate the relative importance of three geographic
scales for longevity in the United States: states, counties, and
CTs. By partitioning variations in age-specific LEs to these
geographic levels, we establish evidence to identify at which
geographic scale action lies to improve equity in longevity. Then,
we further explore the extent to which established socioeconomic
and demographic characteristics at the CT level account for the
variation in longevity at each of the three levels.

Results
For LE0, the difference between the extreme CTs was 41.2 y, and
there was a 13.1-y gap between the 5th and the 95th percentile

(Fig. 1A). The lowest value of LE0 was observed in a CT in Adair
County, Oklahoma (56.3 y), and the highest one in Chatham
County, North Carolina (97.5 y). Considerable variation was also
observed when analyzing LE in the 65 to 74 age group (LE65-
74), with the figures ranging from 7.2 to 37.1 y across CTs. The
lowest values were observed in the south-eastern and central-
eastern parts of the country (Fig. 2A). For the main in-
terpretation of our results, we focus on LE0 and LE65-74 for
illustrating patterns in the early and later ages, but large varia-
tion in LE was consistently observed across CTs for all 11 age
groups as presented in SI Appendix, Fig. S1.

Partitioning Variation in LE across Multiple Geographic Levels. CTs
accounted for the majority of the total variation in LE across all
ages (Table 1). CTs accounted for 70.4% (varCT = 11.4 [SE: 0.06])
of the variation in LE0, followed by 19% for states (varstate = 3.1
[SE: 0.65]) and 10.7% for counties (varcounty = 1.7 [SE: 0.07]). A
similar pattern was observed across all age-groups, with the relative
importance of CTs being greater for LE at older ages (70.4 to
96.8%). The proportion of variance in LE attributable to states and
counties ranged from 2 to 19% and 1 to 11%, respectively.
The importance of simultaneously considering all three geo-

graphic levels in the analysis of LE was highlighted when models
with different multilevel specifications were assessed. We ran
sensitivity analyses with two-level models (CTs and states
[omitting counties]; CTs and counties [omitting states]) (SI Ap-
pendix, Tables S1 and S2, respectively). Compared to our main
results from the three-level models, the proportion of variation
attributable to each geographic unit was substantially different
from the two-level models. In the two-level model that ignored
states, the between-CT variation in LE0 was 19.4 percentage points
higher than what was found in the three-level model. Similarly,
when counties were omitted, the between-CT variation was 12.1
percentage points higher than what was found in the main analysis.

Mapping the Unique Multilevel Geographies. To effectively visualize
the value of partitioning the variance of LE into three unique
geographic levels, we adapted statistical regression maps of re-
siduals unique to CTs, counties, and states. In the statistical maps

Fig. 1. Statistical regression maps for life expectancy at birth (LE0). The equation shows (A) observed census tract (CT) LE0 as the sum of (B) national LE0, (C)
state-specific residual in LE0, (D) county-specific residual in LE0, and (E) CT-specific residual in LE0. United States, 2010 to 2015.
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for LE0 (Fig. 1) and LE65-74 (Fig. 2), the observed variation in
LE across CTs (A) is modeled as a function of US-wide average
that applies to all CTs (B) and the sum of residual differences
that are unique to each state (C), county (D), and CT (E).
For instance, disaggregation of LE0 for the CT with the

highest value (97.5 y) by different geographies indicate that this
CT is located within a state (North Carolina) that has a lower
LE0 by 1.1 y than the overall national average (78.3 y) and within
a county (Chatam) that has a higher LE0 by 3.2 y than the overall
state average in which it is nested. The remaining difference of
17.2 y is attributed to the CT effect. Hence, for this particular CT,
the LE0 of 97.5 is represented as the overall national average (vi-
sualized as map 1B) + state-specific residual (map 1C) + county-
specific residual (map 1D) + CT-specific residual (map 1E), which
is equivalent to 78.3 y + (−1.1 y) + (3.2 y) + (17.2 y).
Similarly, Fig. 2 illustrates that the CT effects trump state and

county effects for LE65-74. Compared to the overall national
average LE65-74 of 19.5 y (visualized as map 2B), the CT with
the lowest LE65-74 (7.2 y) is located within a state that has a
lower LE65-74 by 1.2 y (map 2C) than the overall national

average, and within a county that has a lower LE65-74 by 0.7 y
(map 2D) than the overall state average in which it is nested. The
remaining difference of 10.4 y (map 2E) is attributed to the CT
effect. Hence, for this particular CT, the LE65-74 of 7.2 y is the
sum of 19.5 y + (−1.2 y) + (−0.7 y) + (−10.4 y).

Explaining Variation in LE across Multiple Geographic Levels. CT-
level socioeconomic and demographic variables explained more
than 70% of the between-state variance, 50% of the between-
county variance, and 30% of the between-CT variance for LE at
all age groups up to 55 to 64 y (Table 2). In the older groups, the
variance explained was smaller but still relevant, with the ex-
ception of the 85 and older age group. When each of the CT-
level socioeconomic and demographic variables were in-
dependently considered, income and education explained the
largest proportion of variation in LE (SI Appendix, Fig. S2). In
most age groups, income and education together accounted for
more than 80% of what the full model explained of the between-
state and between-county variance.

Fig. 2. Statistical regression maps for life expectancy at 65 to 74 y of age (LE65-74). The equation shows (A) observed census tract (CT) LE65-74 as the sum of
(B) national LE65-74, (C) state-specific residual in LE65-74, (D) county-specific residual in LE65-74, and (E) CT-specific residual in LE65-74. United States, 2010 to 2015.

Table 1. Variance estimates (SEs) in life expectancy by ages, and the proportion of variance attributable to state, county, and census
tract: United States, 2010 to 2015

State County Census tract Total

Age Var (SE) % VPC Var (SE) % VPC Var (SE) % VPC Var (SE) % VPC

Under 1 3.09 (0.648) 18.97 1.74 (0.073) 10.69 11.45 (0.064) 70.37 16.27 (0.785) 100.00
1–4 2.82 (0.593) 18.55 1.61 (0.069) 10.59 10.77 (0.060) 70.86 15.21 (0.722) 100.00
5–14 2.76 (0.580) 18.36 1.58 (0.068) 10.51 10.69 (0.060) 71.12 15.03 (0.708) 100.00
15–24 2.71 (0.569) 18.22 1.56 (0.067) 10.48 10.61 (0.060) 71.30 14.88 (0.696) 100.00
25–34 2.60 (0.545) 18.06 1.47 (0.064) 10.21 10.33 (0.058) 71.74 14.4 (0.667) 100.00
35–44 2.35 (0.493) 17.38 1.31 (0.058) 9.69 9.86 (0.055) 72.93 13.52 (0.606) 100.00
45–54 1.98 (0.416) 16.60 1.07 (0.049) 8.97 8.88 (0.050) 74.43 11.93 (0.515) 100.00
55–64 1.39 (0.293) 14.78 0.74 (0.036) 7.86 7.28 (0.041) 77.36 9.41 (0.370) 100.00
65–74 0.77 (0.163) 11.15 0.41 (0.023) 5.93 5.73 (0.032) 82.92 6.91 (0.218) 100.00
75–84 0.36 (0.079) 5.89 0.16 (0.013) 2.61 5.60 (0.031) 91.50 6.12 (0.123) 100.00
85 and older 0.20 (0.046) 2.21 0.09 (0.012) 1.00 8.73 (0.048) 96.78 9.02 (0.106) 100.00

Var, variance; VPC, variance partitioning coefficient. All estimates from null three-level model.
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Table 3 shows the regression coefficients for the association
between LE and each independent variable. We observed a
positive association between LE and the CT median income
(except for the median income in the two oldest age groups) as
well as the proportion of people with a college degree. A neg-
ative association was observed for the other independent vari-
ables. A larger proportion of black people, single parents, and
population density was each associated with lower LE.

Discussion
Our study has three salient findings. First, of the total geographic
variation in LE, the unit of CTs accounted for the substantial
majority (70.4 to 96.8%), followed by states (2.2 to 19.0%) and
counties showing the least amount of variability (1.0 to 10.7%).
Second, CT-level socioeconomic and demographic variables
were highly associated with LE, and education and income in
particular explained much of the variation at all three levels of
states, counties, and CTs. Finally, the patterns related to the
overwhelming importance of CTs was observed across all age-
specific LEs.
Our multilevel assessment of the relative importance of states,

counties, and CTs indicate that prior studies that have empha-
sized counties as the primary driver of variability in longevity in
the United States need to be reassessed. What had appeared to
be a significant county variation in prior studies was probably an
artifact resulting from the failure to partition variation in lon-
gevity by other relevant units like states and CTs. Our sensitivity
analyses omitting counties and states one at a time provides a
rough estimation of the extent to which the choice of relevant
geographic scales in multilevel modeling matters. Furthermore,
the mapping of residuals at each level visually reinforces the lack
of variation at county level when state and CT levels are
simultaneously accounted for.
A few prior studies had focused on disparities in LE across

CTs within certain states, although they had not employed a
multilevel perspective. Talbot et al. (18) analyzed data from
2,751 CTs in New York state and found that LE was 8.5 y lower
in the CTs with the highest proportion of poor (≥25%) and
African Americans (≥50%). When analyzing LE data among
local communities in Chicago, Hunt et al. (19) reported a dif-
ference of 14.9 y between the areas with the highest and lowest
values. Dwyer-Lindgren et al. (20) analyzed data from neigh-
borhoods in King County, Washington, and found that although

the county’s LE was in the 95th percentile among all counties in
the United States, marked inequalities were found across the
CTs. Among men, the values varied from 68.4 to 86.7 y and
among women from 73.6 to 88.4 y. These findings reinforce the
relevance of analyses that decompose the estimates to smaller
local areas and suggest that CT-level data can potentially expand
scientific knowledge about the impact of local context on health
with remarkable policy relevance (21).
Adjusting for CT-level socioeconomic and demographic vari-

ables explained a large proportion of variation in longevity at
state and county levels, indicating the strong compositional effect
of CTs. Poorer socioeconomic status at the local level may affect
residents’ health outcomes via greater exposure to fast-food
outlets and problems related to aesthetic and safety percep-
tions (22), lesser green spaces (23–26), more exposure to air
pollution (27), increased risk of engaging in harmful behaviors
like smoking (28), and reduced ability to acquire knowledge
about, locate, or obtain access to health-promoting resources
(19). With regard to the racial composition of CTs, pre-
dominantly black neighborhoods have a higher proportion of
fast-food restaurants, lower availability of healthy foods (29) and
physical activity-related facilities (30), and the residents are more
likely to perceive the area as less safe and less pleasant for
physical activity (31).
We observed a strong positive association between median

income and LE across all ages, except for the two oldest age
groups. This may be due to survivor effect, with those living in
the poorest areas who survive into older age being more robust,
on average, than those from wealthier areas. Alternatively, it
could reflect a tendency for nursing homes to be located further
away from the poorest areas. A larger proportion of variance at
state and county levels remained unexplained for LE at older
ages. The unexplained variation may reflect a mix of true con-
textual effect that is unique at its own level and some residual
compositional effects that remain to be further explained when a
more comprehensive set of CT-level data become available (16).
Evidence of subnational geographic inequalities in LE has

been reported for other high-income (32, 33) and low- and
middle-income countries (34). However, the high magnitude of
variation observed in the United States is noteworthy. Differ-
ences in social policies may help to explain such difference. The
United States has the highest relative poverty rate and the
highest concentration of income and wealth among the top 10%

Table 2. Variance estimates (SEs) in life expectancy by ages, and the percent explained in variation by adjusting for census tract
socioeconomic and demographic variables: United States, 2010 to 2015

State County Census tract Total

Age Var (SE)* % Var explained† Var (SE)* % Var explained† Var (SE)* % Var explained† Var (SE)*

Under 1 0.72 (0.156) 76.62 0.72 (0.037) 58.62 6.31 (0.036) 44.89 7.75
1–4 0.67 (0.144) 76.24 0.68 (0.036) 57.76 6.02 (0.034) 44.10 7.37
5–14 0.65 (0.142) 76.45 0.67 (0.036) 57.59 6.01 (0.034) 43.78 7.33
15–24 0.64 (0.139) 76.38 0.67 (0.036) 57.05 5.99 (0.034) 43.54 7.3
25–34 0.62 (0.134) 76.15 0.63 (0.034) 57.14 5.87 (0.033) 43.18 7.12
35–44 0.56 (0.121) 76.17 0.56 (0.031) 57.25 5.70 (0.032) 42.19 6.82
45–54 0.49 (0.106) 75.25 0.46 (0.027) 57.01 5.45 (0.031) 38.63 6.4
55–64 0.39 (0.085) 71.94 0.34 (0.021) 54.05 5.09 (0.028) 30.08 5.82
65–74 0.30 (0.066) 61.04 0.22 (0.016) 46.34 4.83 (0.027) 15.71 5.35
75–84 0.23 (0.052) 36.11 0.12 (0.011) 25.00 5.42 (0.030) 3.21 5.77
85 and older 0.19 (0.044) 5.00 0.08 (0.011) 11.11 8.67 (0.048) 0.69 8.94

Var, variance.
*Variance from three-level models adjusted for CT socioeconomic and demographic variables: percentage of black people, percentage of people with college
degree, median income, percentage of poor people, population density, and percentage of single parents.
†Percent of variance explained when compared to the null model.
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of households across the Organization for Economic Co-
operation and Development countries (35). Also, the United
States has weaker employment protection laws, no federal pro-
gram for housing assistance (36), and a high proportion of
people who feel financially insecure (35). These are character-
istics of the nation as a whole, but nonetheless illustrate the
weakness of public policies that seek to promote equity. Another
important aspect is that in the United States millions of people
lack access to health care. Stone et al. (37) found remarkable
geographic inequalities in health insurance coverage, and their
multivariate analysis suggested that county’s poverty and un-
employment rates are associated with lower coverage. More
studies on global comparison of the different magnitudes of
subnational inequalities in LE may shed some light on the exact
mechanisms.
This study has four limitations. First, the use of six CT-level

variables may not be adequate to fully capture all of the relevant
compositional effects. For instance, the microclustering of peo-
ple into elderly facilities (i.e., many deaths occur among those
whose residence location is listed as a nursing home or other
elderly care facility) may have inflated the variation at the CT
level, but we were not able to adjust for this. Moreover, we did
not have data on individual-level behavioral and biological var-
iables in our models, which could help better understand the
factors that explain variation in LE and in exploring mediation
and more complex analytical models. Second, it is also important
to note that CT boundaries are arbitrarily drawn and the indi-
viduals may be more influenced by an adjacent CT or by their
workplace CT. Third, in regard to LE estimates, Arias et al. (38)
highlighted the lack of CT-level intercensal population estimates
based on decennial census counts. Sample data had to be used to
estimate population size, and additional error could have been
introduced into the estimates. The authors, in some cases of
missing deaths, calculated a predicted value based on the CT’s

combination of socioeconomic and demographic characteristics,
which may have affected the associations we estimated. The
exclusion of two states and some CTs constitutes an additional
limitation for describing the population of the United States.
Finally, limitations on the quality of the data available in smaller
geographical units should be considered when interpreting the
results due to small sample sizes and high variability.
Despite these data-related limitations, the present findings

demonstrate that population inequalities in longevity in the
United States is primarily a local phenomenon. Geographic
clustering of CTs with high or low LE as well as those with
certain socioeconomic and demographic makeup should not be
conflated with, and interpreted as, the contextual effect of
counties. There is a need for greater precision and targeting of
local geographies in public policy discourse aimed at reducing
health inequalities in the United States. Identification of local
communities with greater needs can guide more equitable re-
source allocation, and assessment of good local practices and
community experiences can be replicated in other areas.

Materials and Methods
Geographical Units. All of the analyses were carried out taking into account of
the hierarchical structure of the data. LE was calculated for US CTs, which are
nested within counties that are nested within states. We analyzed data from
65,662 CTs from 3,020 counties and 48 states and the District of Columbia. In
the United States, states are the primary legal subdivision of the country.
There are currently 50 states, and each one holds executive, legislative, and
judicial authority over its territory. Counties are the primary legal divisions of
most states. The structure and powers of a county government vary across the
states, but most of them are functioning governmental units. Usually, within
a county, there are several CTs, which is a geographic region that, in the
United States, typically contains 1,200 to 8,000 people, with an optimum size
of 4,000 people.

Table 3. Regression coefficient of life expectancy according to census tract socioeconomic and demographic variables: United States,
2010 to 2015

β Coefficient* (CI95%) (mean differences in life expectancy, y)

Age % Black people
% College
degree Median income % Poor people Populational density % Single parents

Under 1 −1.919
(−2.012;−1.826)

3.384
(3.292;3.476)

2.548 (2.432;2.664) −0.946
(−1.047; −0.846)

−0.436
(−0.053; −0.337)

−1.024
(−1.112; −0.937)

1–4 −1.754
(−1.845;−1.662)

3.303
(3.213;3.394)

2.424 (2.310;2.537) −0.934
(−1.032; −0.836)

−0.460
(−0.556; −0.363)

−0.981
(−1.066;v0.896)

5–14 −1.742
(−1.833;−1.651)

3.269
(3.179;3.359)

2.399 (2.286;2.512) −0.937
(−1.035; −0.838)

−0.484
(−0.581; −0.388)

−0.980
(−1.066; −0.895)

15–24 −1.719
(−1.810;−1.628)

3.245
(3.155;3.335)

2.376 (2.263;2.489) −0.945
(−1.043; −0.847)

−0.521
(−0.618; −0.425)

−0.972
(−1.057; −0.887)

25–34 −1.684
(−1.774;−1.594)

3.161
(3.072;3.250)

2.324 (2.212;2.436) −0.979
(−1.076; −0.882)

−0.617
(−0.712; −0.521)

−0.927
(−1.011; −0.843)

35–44 −1.658
(−1.746;−1.570)

3.000
(2.911;3.087)

2.196 (2.086;2.306) −0.997
(−1.093; −0.901)

−0.780
(−0.874; −0.686)

−0.902
(−0.985; −0.819)

45–54 −1.577
(−1.663;−1.491)

2.795
(2.710;2.881)

1.840 (1.732;1.948) −0.940
(−1.033; −0.846)

−0.856
(−0.947; −0.765)

−0.786
(−0.868; −0.705)

55–64 −1.388
(−1.471;−1.306)

2.467
(2.385;2.550)

1.140 (1.036;1.243) −0.774
(−0.865; −0.684)

−0.813
(−0.900; −0.726)

−0.591
(−0.669; −0.513)

65–74 −1.015
(−1.094;−0.936)

1.862
(1.783;1.942)

0.296 (0.196;0.397) −0.526
(−0.614; −0.439)

−0.678
(−0.762; −0.595)

−0.364
(−0.440; −0.288)

75–84 −0.562
(−0.643;−0.480)

1.007
(0.923;1.090)

−0.431
(−0.536; −0.326)

−0.316
(−0.408; −0.224)

−0.498
(−0.583; −0.413)

−0.173
(−0.253; −0.092)

85 and
older

−0.266
(−0.366;−0.166)

0.363
(0.258;0.467)

−0.758
(−0.889; −0.627)

−0.251
(−0.367; −0.135)

−0.404
(−0.506; −0.302)

−0.056 (−0.157;0.045)

*Coefficient comparing the fifth quintile of the distribution of each variable to the first quintile (reference category).
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Estimation of LE. LE data were obtained from the US Small-Area Life Ex-
pectancy Estimates Project, conducted by the National Center for Health
Statistics (39). To calculate the US CT abridged life tables, a few steps were
followed. First, death records for each year of the period 2010 to 2015, as
informed by the National Vital Statistics System, were obtained, and the
residential address information for every death was geocoded to identify
the corresponding CT code. Data were not available for Maine and Wis-
consin. CTs with 6-y total population size smaller than 5,000 (n = 4,703), the
minimum population size necessary for reliable estimates, were excluded
from the study (38). Second, population data from the 2010 decennial census
and from the 2011 to 2015 American Community Survey (ACS) were used to
estimate the number of residents living in each CT. Finally, considering the
existence of missing age-specific death counts, the small population, and the
low death count in some CTs, demographic techniques and statistical mod-
eling strategies were carried out to check the quality of the estimates (14). In
addition, considering that the population estimates were based on sample
data, the methods to calculate the abridged life tables were adjusted. LE was
calculated for 11 age groups: 0, 1 to 4, 5 to 14, 15 to 24, 25 to 34, 35 to 44, 45
to 54, 55 to 64, 65 to 74, 75 to 84, and 85 and over. More details on the
calculation of the LE are provided elsewhere (38).

Socioeconomic and Demographic Variables. To explain the variability observed
in the outcomes, we included six socioeconomic and demographic variables in
the analysis that were available at the CT level: 1) population density (number
of residents per square mile), calculated by dividing the total population
according to the 2000 Decennial Census by land area in square miles as
registered in the 2010 Census Gazetteer Files; 2) proportion of black people in
the CT according to the 2010 Census; 3) proportion of single parents, defined
as the proportion of households with a female head (and no husband pre-
sent) or a male head (and no wife present) with their own children under 18 y
old present (2006 to 2010 ACS data estimate); 4) proportion of residents
below the federal poverty line, measured in the 2006 to 2010 period using the
ACS data; 5) proportion of people aged 25 or older who have a bachelor’s
degree, master’s degree, professional school degree, or doctorate degree,
for which 2006 to 2010 ACS data were used to obtain the estimate for 2010;

and 6) median household income, obtained for 2016 from the 2012 to 2016
ACS. These data are available on the Opportunity Insights database (38).

Statistical Analysis.We fittedmultilevel linear models with random effects for
state, county, and CTs, and LE of each age group as the outcome. First, the null
model was calculated to quantify the total amount of variation at each level
(i.e., varstate, varcounty, varCT). The proportion of variance attributed to each
level z was computed as follows: varz/(varstate + varcounty + varCT). Then we
included the CT variables to the three-level linear model and compared the
final variance estimates obtained in the full model with the variance esti-
mates from the null model to compute the percent explained. In the fully
adjusted model, the β coefficients with respective confidence intervals (95%
CIs) were reported. In order to visualize the geography of LE by CTs, coun-
ties, and states, we mapped the LE values for each age group. We also
mapped the residuals of LE at birth (LE0) and LE at 65 to 74 (LE65-74) at
different levels as estimated from the three-level model. CTs, counties, and
states with residuals within the 95% coverage bounds of the average LE
were classified as “average” (denoted with gray). Geographic units with
residuals that deviated statistically significantly below the average were
colored in red, and those that deviated above the average were denoted
with blue. All of the analyses were carried out using MLwiN 3.0 and Stata 15.
The maps were created using QGIS 3.10.1.

Data Availability. CT LE data can be downloaded from the National Center for
Health Statistics US Small-Area Life Expectancy Estimates Project (available at
https://www.cdc.gov/nchs/nvss/usaleep/usaleep.html). Census tract socioeco-
nomic and demographic variables can be downloaded from the Opportunity
Insights database (https://opportunityinsights.org/). Codes used to run mul-
tilevel analyses in Stata 15 and those used to create the maps in QGIS 3.10.1
are available as Datasets S1 and S2.
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